

REGIERUNGSPRÄSIDIUM FREIBURG LANDESAMT FÜR GEOLOGIE. ROHSTOFFE UND BERGBAU

Physikalische Eignung von Unterbodenmaterial zur Verwendung für Rekultivierungs- und Wasserhaushaltsschichten in Deponieoberflächenabdichtungssystemen

Erläuterungen

Stand: November 2019

Die physikalischen Eignungskriterien von Bodenmaterial für die Verwendung für Rekultivierungs- und Wasserhaushaltsschichten in Deponieoberflächenabdichtungssystemen sind beschrieben in:

LAGA Ad-hoc-AG "Deponietechnik" Bundeseinheitlicher Qualitätsstandard 7-1 "Rekultivierungsschichten in Deponieoberflächenabdichtungssystemen" vom 13.04.2016 [BQS 7-1]

und

LAGA Ad-hoc-AG "Deponietechnik" Bundeseinheitlicher Qualitätsstandard 7-2 "Wasserhaushaltsschichten in Deponieoberflächenabdichtungssystemen" vom 13.04.2016 [BQS 7-2]

Die Unterteilung der Bodenarten in die Kategorien A bis D orientieren sich an den aus Pedotransferfunktionen abgeleiteten nutzbaren Feldkapazitäten (nFK) bei mittlerer Trockenrohdichte (TRD) und Totwasser (LK) bei geringer und bei mittlerer TRD (Abb. 1).

Die Grobbodenanteile (>2 mm) werden nach der DIN 19731 bewertet. Hinweis: Hier sind auch die Kriterien zur stofflichen Bewertung von Böden enthalten.

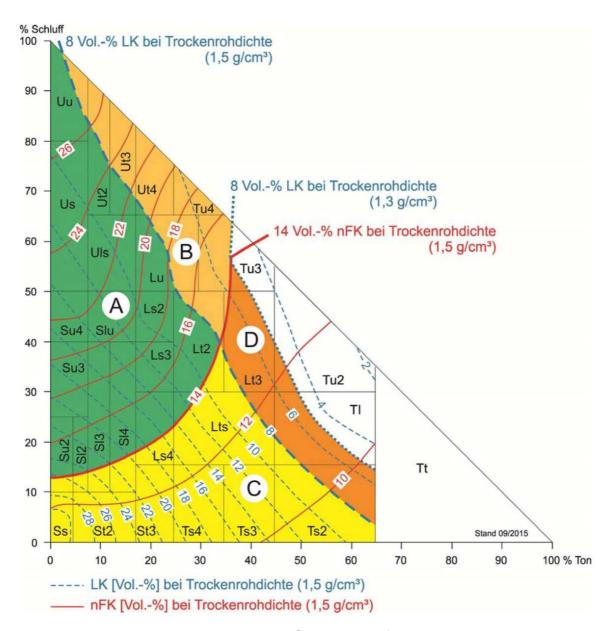


Abbildung 1: Bodenkategorien A bis D als Orientierung für die Auswahl von Bodenmaterial auf der Basis bundesweiter Werte für die nutzbare Feldkapazität und die Luftkapazität (Dehner, U. & Maier-Harth, U. 2016)

Tab. 1: Unterbodenkategorien und die Anforderungen für die Rekultivierungs- und Wasserhaushaltsschichten in Deponieoberflächenabdichtungssystemen nach BQS 7-1 und 7-2

5 dm nkeit kapazi-		
kapazi-		
5 dm		
einer mittlerer" Lagerungsdichte (1,5 g/cm3) ist die Wahrscheinlichkeit		
werden.		
cker ein-		
<u> </u>		
reicht bei optimalem Einbau (mittlere Lagerungsdichte) nicht aus, um den		
erforderlichen nFK-Wert von 140 mm zu erreichen. Die Mächtigkeit muss		
folglich entsprechend erhöht werden. Ein begrenzender Faktor für die Er-		
höhung der Mächtigkeit ist die Tiefe des effektiven Wurzelraumes des		
Bewuchses zuzüglich der kapillaren Steighöhe, da das dort gespeicherte		
Bodenwasser von den Pflanzen wieder aufgenommen und verdunstet		
werden soll. Die Bodenarten St3, Ts4, Ts3 und Ts2 kommen in der Natur selten vor, werden jedoch mitunter als künstlich hergestellte Substrate		
angeboten.		
on		
ווע		
orderun-		
um bei lockerem Einbau (Trockenrohdichte ca. 1,3 g/cm³) die Anforderungen an die nFK und LK zu erfüllen. Je nach Konsistenz des Bodens ist		
dieses Ziel oftmals nur schwer zu erreichen.		

Tab. 2: Eignungsgruppen in Abhängigkeit von Grobbodenklassen (modifiziert nach DIN 19731)

Grobbodenklassen	Verwertungseignung
<10 Vol%	geeignet
10-30 Vol%	eingeschränkt geeignet
>30 Vol%	eingeschränkt geeignet bis ungeeignet

Datenfelder

Tab. 3: Datenfelder der Datei rekult_eignung_bw_2019

Feld	Inhalt
KE	Bodeneinheit der BK50
Ergeb_FB	Bodenkategorie Feinboden (siehe Tab. 1 und Abb. 1)
Ergeb_GB	Grobbodenklasse (siehe Tab. 2)

Grundlagen

Daten: Bodenkarte Baden-Württemberg BK50

Methoden und Umsetzung: Lt. modifiziert nach *P. Wattendorf, O. Ehrmann & W. Konold [Professur für Landespflege, Albert-Ludwigs-Universität Freiburg] & T. Triantafyllidis, A. Bieberstein & H. Reith [Institut für Bodenmechanik und Felsmechanik, Karlsruher Institut für Technologie] 2019: Standsicherheits- und Bodeneigenschaften von Rekultivierungssubstraten - Bericht Projekt L7515003 und L7515009, [unveröff.].*